Robustness of stochastic bandit policies

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robustness of Anytime Bandit Policies

This paper studies the deviations of the regret in a stochastic multi-armed bandit problem. When the total number of plays n is known beforehand by the agent, Audibert et al. [2] exhibit a policy such that with probability at least 1− 1/n, the regret of the policy is of order log n. They have also shown that such a property is not shared by the popular ucb1 policy of Auer et al. [3]. This work ...

متن کامل

Irrevocable Multi-Armed Bandit Policies

This paper considers the multi-armed bandit problem with multiple simultaneous arm pulls. We develop a new ‘irrevocable’ heuristic for this problem. In particular, we do not allow recourse to arms that were pulled at some point in the past but then discarded. This irrevocable property is highly desirable from a practical perspective. As a consequence of this property, our heuristic entails a mi...

متن کامل

Deviations of Stochastic Bandit Regret

This paper studies the deviations of the regret in a stochastic multi-armed bandit problem. When the total number of plays n is known beforehand by the agent, Audibert et al. (2009) exhibit a policy such that with probability at least 1− 1/n, the regret of the policy is of order logn. They have also shown that such a property is not shared by the popular ucb1 policy of Auer et al. (2002). This ...

متن کامل

Lower bounds and selectivity of weak-consistent policies in stochastic multi-armed bandit problem

This paper is devoted to regret lower bounds in the classical model of stochastic multi-armed bandit. A well-known result of Lai and Robbins, which has then been extended by Burnetas and Katehakis, has established the presence of a logarithmic bound for all consistent policies. We relax the notion of consistency, and exhibit a generalisation of the bound. We also study the existence of logarith...

متن کامل

Non-Stochastic Bandit Slate Problems

We consider bandit problems, motivated by applications in online advertising and news story selection, in which the learner must repeatedly select a slate, that is, a subset of size s from K possible actions, and then receives rewards for just the selected actions. The goal is to minimize the regret with respect to total reward of the best slate computed in hindsight. We consider unordered and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Theoretical Computer Science

سال: 2014

ISSN: 0304-3975

DOI: 10.1016/j.tcs.2013.09.019